Publications

Some publications in the lines of research by the Laboratory:

  1. V.I. Kozlovsky, V.A. Akimov, M.P. Frolov, Yu.V. Korostelin, A.I. Landman, V.P. Martovitsky, V.V. Mislavskii, Yu.P. Podmar’kov, Ya.K. Skasyrsky, A.A. Voronov, Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compounds crystals grown from vapour phase. Phys. Stat. Solidi B, 247(6), 1553–1556 (2010).
  2. V.A. Akimov, M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, A.I. Landman, V.V. Mislavskii, Yu.P. Podmar’kov, Ya.K. Skasyrsky, A.A. Voronov, Cr2+:CdS crystal as a new material for room-temperature tunable mid-infrared lasing. Phys. Stat. Solidi C, 7(6), 1688–1690 (2010).
  3. M.A. Gubin, A.N. Kireev, Yu.V. Korostelin, A.I. Landman, Yu.P. Podmar’kov, M.Yu. Filipchuk, M.P. Frolov, A.I. Shelkovnikov, Tunable single-frequency continuous laser on a Cr2+:CdSe crystal.Kratk. Sobshch. Fiz. FIAN, 38(7), 34–40 (2011).
  4. V.I. Kozlovsky, Yu.V. Korostelin, A.I. Landman, V.V. Mislavsky, Yu.P. Podmar’kov, Ya.K. Skasyrsky, M.P. Frolov, Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm. Quantum Electron.,41(1), 1–3 (2011).
  5. M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, V.V. Mislavsky, Yu.P. Podmar’kov, Ya.K. Skasyrsky, A.A. Voronov, Laser radiation tunable within the range of 4.35–5.45 µm in a ZnTe crystal doped with Fe2+ ions. J. Russian Laser Res., 32(6), 528–536 (2011).
  6. M.A. Gubin, A.N. Kireev, Yu.V. Korostelin, Yu.P. Podmar’kov, D.A. Tyurikov, M.P. Frolov, A.S. Shelkovnikov, Tunable two-mode Cr2+:ZnSe laser with a frequency-noise spectral density of 0.03 Hz/Hz–1/2. Quantum Electron., 42(6), 509–513 (2012).
  7. M.V. Inochkin, V.V. Nazarov, D.Yu. Sachkov, L.V. Khloponin, V.Yu. Khramov, Yu.V. Korostelin, A.I. Landman, Yu.P. Podmar’kov, M.P. Frolov, A compact Er:YLF laser with a passive Fe2+:ZnSe shutter, Opt. Zhurn., 79(6), 31–35 (2012).
  8. V.I. Kozlovsky, Yu.V. Korostelin, O.G. Okhotnikov, Yu.P. Podmar’kov, Ya.K. Skasyrsky, M.P. Frolov, V.A. Akimov, Intracavity laser spectroscopy with a semiconductor disk laser-pumped cw Cr2+:ZnSe laser.  Quantum Electron., 43(9), 638–642 (2013).
  9. M.P. Frolov, Yu.V. Korostelin, V.I. Kozlovsky, V.V. Mislavskii, Yu.P. Podmar’kov, S.A. Savinova, Ya.K. Skasyrsky, Study of a 2-Joule pulsed Fe:ZnSe 4-μm laser, Laser Phys. Lett., 10, 125001 (2013).  
  10. I.V. Kochetov, A.P. Napartovich, N.P. Vagin, N.N. Yuryshev, Role of N2 molecules in pulse discharge production of  I atoms for a pulsed chemical oxygen–iodine laser,. J. Phys. D: Appl. Phys., 44, 355204 (2011).
  11. I.V. Kochetov, A.P. Napartovich, N.P. Vagin, N.N. Yuryshev, Mechanism of pulse discharge production of  iodine atoms from CF3I molecules for a chemical oxygen–iodine laser. J. Phys. D: Appl. Phys., 42 (2009).
  12. N.P. Vagin, I.V. Kochetov, A.P. Napartovich, N.N. Yuryshev, Dynamics of production of iodine atoms by dissociation of iodides in a pulsed self-sustained discharge. Quantum Electron., 43(7), 610–615 (2013).

Absorption at the laser transition has been used for the first time to assess the evolution of concentration of iodine atoms in a pulsed self-sustained discharge in mixtures of iodides with a buffer gas such as molecular nitrogen and helium. Dynamics of the iodine atom production is studied by the method of absorption spectroscopy. The dissociation of CnF2n+1I and CnH2n+1I (n = 1, 2) iodides is investigated. The energy required to produce atomic iodine is evaluated. The experimental data obtained for CF3I are compared with the results of numerical simulations, their reasonable agreement being demonstrated.