План текущих работ ЦКП ФИАН и текущая загрузка оборудования

І. Новые квантовые материалы и гетероструктуры на их основе

Проводимые текущие исследования	Используемые	Доступность
•	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Синтез и рост кристаллов топологических	«СИНТЕЗ»,	160
изоляторов (ТИ), как основы для создания	«РЕНТГЕН»	
наноструктур		
2. Синтез и рост кристаллов слоистых соединений,	«РЕНТГЕН»,	180
вейлевских и дираковских полуметаллов. Поиск и	«ЭКСТРИМ»,	
реализация сверхпроводимости в материалах с	«СИНТЕЗ»	
нарушенной симметрией инверсии, а также в		
вейлевских полуметаллах на основе переходных		
металлов		
3. Синтез и рост железосодержащих	«СИНТЕЗ»	120
сверхпроводников с различным легированием,		
выявление и изучение в них фазы топологического		
изолятора		
4. Создание микро- и наноструктур на основе ТИ,	«НАНОЛАБ»	192
сверхпроводников с нетривиальной топологией		
или симметрией параметра порядка,		
графеноподобных материалов		
5. Рост квазиэпитаксиальных пленок новых	«СИНТЕЗ»	240
синтезированных материалов		
6. Изготовление структур на основе двумерных ТИ	«НАНОЛАБ»	144
и изучение их свойств при варьировании уровня		
Ферми		

II. Новые высокотемпературные сверхпроводники

Проводимые текущие исследования	Используемые	Доступность
	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Получение поли- и монокристаллических	«СИНТЕЗ»	200
образцов сверхпроводящих слоистых арсенидов и	«РЕНТГЕН»	
селенидов железа (с различным уровнем		
допирования) с использованием методики газового		
транспорта, расплавными и раствор-расплавными		
методами, а также методом Бриджмена		
2. Инженерия электронного спектра путем	«СИНТЕЗ»	180
реализации плоских зон и сингулярности в	«ЭКСТРИМ»	
плотности состояний в синтезированных ВТСП		
материалах на уровне Ферми с помощью		
химического легирования с целью проверки		
возможности повышения критической		
температуры		
3. Тонкая подгонка к уровню Ферми особенностей	«ЭКСТРИМ»	220
в плотности состояний с помощью		
гидростатического давления, одноосного сжатия и		

электрического легирования (техникой ионного		
электролита)		
4. Реализация топологической сверхпроводимости	«НАНОЛАБ»	96
на интерфейсе или в объеме топологически		
нетривиальных материалов		
5. Ван-де ваальсовая сборка графеноподобных	«НАНОЛАБ»	96
монослоев с заданной разориентацией для		
создания плоских зон и реализации ВТСП в		
углеродных материалах		
6. Измерения при высоких и сверхвысоких	«ЭКСТРИМ»	48
давлениях с целью поиска сверхпроводимости при		
температурах порядка комнатной		

III. Физика сверхпроводимости и ВТСП

п	TT	
Проводимые текущие исследования	Используемые	Доступность
	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Выяснение электронного спектра вблизи	«ЭКСТРИМ»	60
уровня Ферми, а также симметрии волновых		
функций квазичастиц в синтезированных ВТСП		
материалах с помощью спектроскопии		
многократных андреевских отражений		
2. Выявление симметрии и структуры волновых	«ЭКСТРИМ»	96
функций пар методом низкотемпературной		
сканирующей туннельной спектроскопии.		
Выявление возможной локальной		
сверхпроводимости в наногранулах, в		
топологических изоляторах и графеноподобных		
структурах		
3. Измерение ИК спектров отражения и	«СПЕКТРО	80
пропускания, а также эллипсометрические	СКОПИЯ»	
исследования (в диапазоне от ИК до УФ) ВТСП,		
топологических изоляторов и других КМ. Расчет		
оптических функций (проводимость,		
диэлектрическая проницаемость), разделение		
вкладов различных механизмов, формирующих		
спектры		
4. Измерение термодинамических характеристик	«ЭКСТРИМ»	144
сверхпроводящего перехода в ВТСП		
(теплоемкость, анизотропия теплоемкости в		
поле, химический потенциал, глубина		
проникновения) с целью определения силы		
связи, симметрии параметра порядка, природы		
псевдощелевого состояния		

IV. Сильно-коррелированные материалы

Проводимые текущие исследования	Используемые	Доступность
	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Выявление и изучение эффектов	«ЭКСТРИМ»	100
межэлектронного взаимодействия в двумерных		
и квазиодномерных электронных системах		
2. Выявление и изучение квантовых фазовых	«ЭКСТРИМ»	100
переходов в железосодержащих		
сверхпроводниках		
3. Исследование свойств гекса-, додэка- и	«ЭКСТРИМ»,	120
гектоборидов	«СПЕКТРО	
	СКОПИЯ»	
4. Исследование эффектов взаимодействия	«ЭКСТРИМ»	100
спинового, зарядового упорядочения и		
сверхпроводящего спаривания в		
низкоразмерных материалах		

V. Создание наноструктур на основе новых квантовых материалов и инжиниринг их электронных свойств

Проводимые текущие исследования	Используемые	Доступность
	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Создание микро и нано-структур на основе:	«НАНОЛАБ»	48
топологических изоляторов, а также пленочных		
структур со сверхпроводниками с		
нетривиальной топологией или симметрией		
параметра порядка и с графеноподобными		
материалами		
2. Исследование квазиодномерных структур на	«ЭКСТРИМ»	80
основе углеродных нанотрубок, графена и		
структур на их основе		
3. Создание и изучение наноструктур с затвором	«НАНОЛАБ»	144
на основе гетеропереходов в контакте со	«ЭКСТРИМ»	
сверхпроводником		

VI. Разработка новых технологий получения ВТСП материалов и устройств для практического применения

Проводимые текущие исследования	Используемые	Доступность
	комплексы	оборудования в
	установок	текущем месяце для
		внешних
		пользователей (час.)
1. Разработка технологии получения	«СИНТЕЗ»,	0
протяженных токонесущих элементов на основе	«ЭКСТРИМ»	

железосодержащих сверхпроводников методом		
криотермального механохимического		
активирования, а также методом экструзии (типа		
«порошок в трубе»)		
2. Разработка и исследование компактных	«ЭКСТРИМ»	70
токоограничивающих устройств на основе		
ВТСП		
3. Разработка проектов ВТСП магнитов со	«СИНТЕЗ»,	150
сверхсильными полями на основе	«ЭКСТРИМ»	
железосодержащих сверхпроводников.		
Измерения критических токов и критических		
полей		