План работы ЦКП ФИАН. Перспективные исследования

І Высокотемпературные сверхпроводники

Планируемые исследования	Задействованные
	комплексы
	установок
1. Планируемой главной целью деятельности Центра является поиск и	«СИНТЕЗ»
создание сверхпроводников с критической температурой порядка	
комнатной. Для достижения этой цели в Центре развиваются несколько	
направлений исследований: (а) создание плоских зон на уровне Ферми,	
(б) подстройка сингулярности ван-Хова в окрестности уровня Ферми,	
(в) осуществление топологической сверхпроводимости, (г)	
осуществление сверхпроводимости на интерфейсе материала с	
сильными фононными модами, (д) осуществление сверхпроводимости	
в метал-оксидных гетероструктурах, (е) осуществление	
сверхпроводимости в материалах с ковалентной связью в условиях	
высокого давления. Инженерию требуемой зонной структуры	
запланировано проводить путем выбора перспективного химического	
мотива, химического легирования материала, а тонкую подстройку	
спектра – путем электрического легирования, гидростатического	
давления и одноосного сжатия.	
2. Создание материалов в Центре планируется проводить по	«СИНТЕЗ»
нескольким магистральным направлениям: (а) создание новых	
объемных материалов, (б) создание тонкопленочных эпитаксиальных	
структур и интерфейсов, (в) создание метал-оксидных пленочных	«НАНОЛАБ»
гетероструктур, (г) создание интерфейсов с топологически	
нетривиальными квантовыми материалами. В области синтеза новых	
объемных ВТСП материалов для исследований и прикладных	
разработок планируется получение поликристаллических и	
монокристаллических образцов сверхпроводящих слоистых	
оксикупратов, арсенидов и селенидов железа, теллуридов и	
халькогенидов переходных металлов, с использованием методики	
газового транспорта, расплавными и раствор-расплавными методами,	
а также методом Бриджмена (рост в температурном градиенте).	
Запланированы исследования взаимосвязи кристаллохимических	
параметров с физическими свойствами полученных материалов	
методами рентгенофазового анализа, электронной микроскопии,	
энергодисперсионной спектроскопии и дифракции обратно-	
рассеянных электронов. Для создания гетероструктур планируется	
использование методов атомно-слоевого осаждения из газовой фазы,	
магнетронного напыления, электронно-лучевого осаждения, и	
импульсного лазерного осаждения эпитаксиальных слоев.	

3. Планируется развитие методик измерений при Мб-давлениях для получения новых полигидридов и осуществления в них сверхпроводимости под давлением. Эту работу планируется проводить в кооперации с Институтом кристаллографии РАН. Путем замещения редкоземельных элементов планируется снижать величину давления, требуемого для осуществления сверхпроводимости. 4. Для изучения связи электронной структуры синтезированных ВТСП материалов с их сверхпроводящими характеристиками проводятся исследования их зонной структуры методом фотоэлектронной спектроскопии с угловым и спиновым разрешением.	«ЭКСТРИМ»
5. Планируется продолжать исследования магнитотранспортных (эффект Холла, магнитосопротивление, термоэдс) и термодинамических свойств (АС- и DC-намагниченности, температурные зависимости теплоемкости, анизотропия теплоемкости в магнитном поле, глубина проникновения, критическое магнитное поле, химический потенциал). Эти измерения востребованы разработчиками новых материалов, как из ФИАН, так и из сторонних организаций.	«ЭКСТРИМ»
6. В области оптической спектроскопии ВТСП материалов, планируется проведение исследований по ИК- спектроскопии сверхпроводящих пниктидов железа, а в дальнейшем — других перспективных материалов для определения параметров нормального и сверхпроводящего состояния (величины сверхпроводящих щелей, типа симметрии параметра порядка и др.).	«СПЕКТРОСКО ПИЯ»
7. Планируется экспериментально изучить возможность изменения симметрии параметра порядка с ростом концентрации дефектов из анализа поведения температурной зависимости сверхтекучей плотности (или лондоновской глубины проникновения), которая согласно теории с ростом концентрации дефектов изменяется от экспоненциальной до степенной T^n с $1,6 < n < 2$.	«ЭКСТРИМ»
8. Для выявления особенностей электронного спектра объемных сверхпроводников вблизи уровня Ферми, а также симметрии и структуры волновых функций квазичастиц (электронов, куперовских пар) в синтезированных ВТСП материалах планируется проведение исследований по спектроскопии многократных андреевских отражений в микроконтактах и микромостиках типа SnS.	«ЭКСТРИМ»

9. Информацию о локальных поверхностных свойствах (нм- и суб-нм)	«ЭКСТРИМ»,
планируется получать (а) из измерений методом	«НАНОЛАБ»
сверхвысоковакуумной низкотемпературной сканирующей	
туннельной микроскопии (СТМ) и спектроскопии (СТС) и (б) путем	
изготовления наноструктур субмикронных размеров. Измерения	
планируется проводить в диапазоне температур до 0,4К и в магнитных	
полях до 15Тесла)	
10. Планируются поиск сверхпроводимости в слоях атомной толщины,	«НАНОЛАБ»
на интерфейсах и управление ею при помощи методов послойного	
дизайна структур, электрического легирования, а также исследования	
сверхпроводящих свойств наноструктур из таких слоев.	

II Новые квантовые материалы

Для исследований КМ запланирована работа по трем направлениям: рост кристаллов, создание из них гетероструктур, наноструктурирование и исследование их электронных свойств. Микро- и нано-структуры планируется создавать на основе топологических изоляторов, вейлевских и дираковских полуметаллов, графеноподобных материалов и сверхпроводников с возможной нетривиальной топологией или с сильным спинорбитальным взаимодействием.

Планируемые исследования	Задействованные
	комплексы
	установок
1. Планируется синтез и рост монокристаллов топологических	«СИНТЕЗ»
изоляторов, вейлевских и дираковских полуметаллов как платформы	«РЕНТГЕН»
для создания пленочных и "чешуечных" наноструктур. Создание и	«ЭКСТРИМ»
исследование ван-дер Ваальсовых гибридных структур из	
топологически нетривиальных материалов в контакте со	
сверхпроводниками.	
2. Планируется проведение ARPES исследований электронного спектра новых материалов - кандидатов в вейлевские и дираковские полуметаллы, для выявления дираковских особенностей и Ферми-дуг	«ЭКСТРИМ»
в спектре, а также для оптимизации/корректировки условий роста и	
состава материалов.	
3. Планируется применение ARPES методик для выявления в	"AKCTDIAM"
энергетическом спектре квантовых материалов ветвей различной	
киральности и спиновой поляризации.	
4. Планируется изучение поверхностных электродинамических свойств КМ:	«СПЕКТРОСКО ПИЯ»
Измерение ИК спектров отражения и пропускания, а также	
эллипсометрические измерения (в диапазоне от ИК до УФ). Расчет	
оптических функций (проводимость, диэлектрическая проницаемость),	
разделение вкладов различных механизмов, формирующих спектры.	
5. Планируется реализация микро и нано- контактов к химически	«СПЕКТРОСКО
чувствительным наночешуйкам топологических изоляторов.	«RNП
Выявление новых транспортных свойств таких структур.	

III. Сильно коррелированные материалы

Планируемые исследования	Задействованные
	комплексы
	установок
1. Планируется выявление и изучение эффектов межэлектронного	«ЭКСТРИМ»
взаимодействия в двумерных и квазиодномерных электронных	
системах, включая селениды, халькогениды, арсениды и теллуриды.	
2. Планируется выявление и изучение квантовых фазовых переходов в	«ЭКСТРИМ»
сверхпроводниках. Изменение химическим допированием положения	«СИНТЕЗ»
на фазовой диаграмме сверхпроводящей фазы в железосодержащих	«РЕНТГЕН»
сверхпроводниках с целью выявления квантовых критических точек;	
тонкая подгонка к критической точке методами зонной инженерии	
(давление, электронное легирование). Выявление особенностей вблизи	
критической точки в нормальной фазе в термодинамических	
характеристиках и особенностей (симметрия, наличие нулей)	
параметра порядка в сверхпроводящей фазе из вольт-амперных	
характеристик нано-сужений.	
3. Планируется исследование свойств, механизмов электропроводности	«ЭКСТРИМ»
и фазовых состояний в манганитах.	
4. Планируется исследование свойств гекса-, додэка- и гектоборидов.	«ЭКСТРИМ»
5. Планируется исследование эффектов взаимодействия спинового,	«ЭКСТРИМ»
зарядового упорядочения и сверхпроводящего спаривания в	
квазидвумерных и квазиодномерных материалах.	

VI. Технологии создания ВТСП материалов и устройств для практического применения

Планируемые исследования	Задействованные
	комплексы
	установок
1. Планируется разработка технологии получения протяженных	«СИНТЕЗ»
токонесущих элементов на основе железосодержащих	
сверхпроводников с изотропными свойствами методом	
криотермального механохимического активирования, а также методом	
экструзии (геометрия типа «порошок в трубе»). Оптимизация	
сверхпроводящих характеристик путем изменений условий синтеза,	
экструзии и введения связующих наночастиц.	
2. Планируется разработка и исследование ВТСП компактных	«ЭКСТРИМ»
токоограничивающих устройств.	
3. Планируется разработка источников сверхсильных магнитных полей на	«СИНТЕЗ»
основе новых ВТСП материалов.	«ЭКСТРИМ»