# Зависимость верхнего критического магнитного поля от дефектности и параметры электронной структуры MgB<sub>2</sub>

© С.И. Красносвободцев, А.В. Варлашкин, А.И. Головашкин, Н.П. Шабанова

Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия

E-mail: krasn@sci.lebedev.ru

(Поступила в Редакцию 25 июня 2004 г.)

Для двухзонного сверхпроводника MgB<sub>2</sub> исследована зависимость верхнего критического магнитного поля  $H_{c2}$  (**H** || **c**) от величины остаточного удельного сопротивления  $\rho_n$ . Обнаружен классический рост наклона  $-dH_{c2}/dT$  температурной зависимости  $H_{c2}(T)$  при повышении дефектности материала. Определено значение верхнего критического магнитного поля чистого предела, получены прямые оценки параметров носителей 2D  $\sigma$ -зоны, включая скорость Ферми и длину когерентности. Определен вклад от рассеяния электронов в величину  $H_{c2}$ , что позволило оценить длины свободного пробега электронов в образцах с различной дефектностью. Из зависимости наклона  $-dH_{c2}/dT$  от  $\rho_n$  с учетом представлений о зонной структуре получена также величина плотности электронных состояний  $\sigma$ -электронов на уровне Ферми. Прямая оценка этой величины из исследуемой зависимости невозможна, поскольку верхнее критическое магнитное поле определяется группой носителей одной зоны, а удельное сопротивление — носителями обеих зон.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-17353) и Федеральной целевой научно-технической программы (госконтракт № 40.012.1.1.1357).

### 1. Введение

Неожиданное открытие высокотемпературной сверхпроводимости в классе интерметаллидов обусловило значительный научный интерес к соединению MgB<sub>2</sub> [1], критическая температура которого существенно превысила максимальную Тс для бескислородных сверхпроводников. Благодаря высокой активности исследователей к настоящему моменту считается установленным, что диборид магния является анизотропным двухщелевым сверхпроводником. Существование двухэнергетических щелей, предсказанное теоретически [2], получило подтверждение по результатам туннельных экспериментов [3-5], измерениям теплоемкости [6-8], данным инфракрасной спектроскопии [9,10]. Аналогично купратным (металлооксидным) высокотемпературным сверхпроводникам в MgB2 проявляется, хотя и в меньшей степени, кристаллическая анизотропия. Измерения критических магнитных полей монокристаллов [11-17] и эпитаксиальных пленок [18-25] показали, что отношение значений верхнего критического магнитного поля  $H_{c2}$ при ориентации вдоль плоскостей ab и перпендикулярно им значительно превышает величину 1.69, т.е. не связано с проявлением поверхностной сверхпроводимости. В то же время остается фактически неизученным фундаментальный вопрос о связи величины верхнего критического магнитного поля и длины свободного пробега электронов в MgB<sub>2</sub>. В случае классических сверхпроводников Н<sub>c2</sub> растет при сокращении длины свободного пробега электронов и длины когерентности из-за рассеяния [26-30]. В высокотемпературных металлооксидных сверхпроводниках характер зависимости принципиально иной [31-33], что связано с возможным подавлением критической температуры при рассеянии электронов на дефектах в *d*-волновых сверхпроводниках и сингулярностью в плотности электронных состояний [34,35]. Представляет интерес установить характер изменения  $H_{c2}$  при сокращении длины пробега электронов в многозонном сверхпроводнике MgB<sub>2</sub>.

В настоящей работе изучается влияние дефектности диборида магния на наклон температурной зависимости верхнего критического магнитного поля  $-dH_{c2}/dT$ . Проводится сравнение критических полей ориентированных пленок с различным остаточным удельным сопротивлением, а также с литературными данными для пленочных и монокристаллических образцов этого материала. Исследуется связь  $H_{c2}$  с основными параметрами электронной структуры MgB<sub>2</sub>.

#### 2. Эксперимент и результаты

Напыление пленок производилось импульсными твердотельными лазерами на подложки MgO (111). Использовались стехиометрические мишени MgB<sub>2</sub>. Технологические детали синтеза представлены в [36]. Пленки имели резкие индуктивные переходы, что указывало на их объемную однородность. Для измерений в магнитном поле использовались с-ориентированные пленки с критической температурой 39К и достаточно хорошей поверхностью, позволяющей определить толщину и удельное сопротивление. Измерение температурной зависимости верхнего критического магнитного поля проводилось резистивным методом в магнитом поле **H** || **c** [37]. Фазовая кривая  $H_{c2}(T)$ , определяющаяся по температурному сдвигу середины перехода, имела слабую положительную кривизну. Наклон температурной зависимости  $-dH_{c2}/dT$  для различных образцов сравнивался при температуре около 30 К.

Для оценки зависимости величины наклона  $-dH_{c2}/dT$ от остаточного удельного сопротивления  $\rho_n$  MgB<sub>2</sub> были выбраны пленки, не обнаруживающие признаков содержания избыточного магния. Согласно результатам исследований [38], образцы MgB<sub>2</sub> с избытком магния характеризуются критической температурой, превышающей 39 К, и высоким отношением RRR удельного сопротивления при комнатной температуре к остаточному, характерным для чистых металлов. Кроме того, наличие магния в качестве второй фазы в образцах должно сильно сказываться на результатах измерений удельного сопротивления. Для измеренной пленки с удельным сопротивлением  $\rho_n \sim 15 \mu \Omega \cdot \text{сm}$  при 40 К ( $T_c = 39$  К, RRR = 3.2) значение наклона составило 0.27 Т/К. Образец с  $\rho_n \sim 30 \, \mu \Omega \cdot {
m cm} \, (T_c = 37.5 \, {
m K}, \, {\it RRR} = 2)$  имел наклон в полтора раза выше.

Полученные результаты были сопоставлены с литературными данными для образцов MgB<sub>2</sub> с критической температурой около 39К и различной дефектностью (монокристаллы [11-14] и ориентированные пленки [18-25]). Были обнаружены значительные расхождения в величине наклона  $-dH_{c2}/dT$  в области низких значений остаточного удельного сопротивления. На наш взгляд, это может быть связано с наличием избыточного магния в пленках, приводящего к ошибочным оценкам величины остаточного удельного сопротивления. Технология приготовления пленок MgB2 такова, что избежать попадания в них избыточного магния оказывается трудно, поскольку процесс охлаждения пленок происходит в парах магния. Для того чтобы из имеющейся совокупности данных выбрать те, которые отражали бы характер изменения наклона критического поля  $-dH_{c2}/dT$  от степени дефектности MgB<sub>2</sub>, понадобились дополнительные данные, характеризующие исследуемые образцы. Мы исходили из того, что дефекты в образцах с одинаковой критической температурой не должны приводить



**Рис.** 1. Корреляция отношения сопротивления  $RRR = \rho(193)/\rho_n$  с удельным сопротивлением  $\rho_n$  в плоскости *ab* образцов MgB<sub>2</sub> различной дефектности: 1 — пленок, исследованных в настоящей работе, 2-6 и 7 — пленок [21–25] и [18–20], 8–11 — монокристаллов [11–14].



**Рис. 2.** Зависимость наклона  $-dH_{c2}/dT$  температурной зависимости верхнего критического магнитного поля (**H** || **c**) от удельного сопротивления  $\rho_n$  в плоскости *ab* образцов MgB<sub>2</sub>. Данные обозначены так же, как на рис. 1. Штриховой линией показано значение наклона чистого предела  $-dH_{c2}^0/dT$ .

к изменениям электронных и фононных характеристик. Иными словами, температурно зависящая часть удельного сопротивления  $\rho_{ph}(T)$  в таких образцах должна оставаться неизменной. Поскольку удельное сопротивление образца может быть представлено, согласно правилу Матиссена, в виде двух слагаемых  $\rho(T) = \rho_n + \rho_{ph}(T)$ , а отношение сопротивлений определяется выражением  $RRR = 
ho(293)/
ho_n = (
ho_n + 
ho_{ph}(293))/
ho_n = 1 + C/
ho_n$ , saвисимость отношения сопротивлений от остаточного удельного сопротивления должна быть гиперболической. (В данном случае считалось, что удельное сопротивление нормального состояния вблизи перехода  $\rho_n$  близко к остаточному.) На рис. 1 представлена корреляция *RRR* и  $\rho_n$  для образцов, у которых измерялся наклон температурной зависимости верхнего критического магнитного поля. Видно, что для ряда монокристаллов и пленок зависимость RRR от  $\rho_n$  действительно близка к гиперболической. По-видимому, данные о верхнем критическом магнитном поле именно этих образцов должны отражать зависимость наклона  $-dH_{c2}/dT$  от степени дефектности диборида магния.

Рис. 2 демонстрирует повышение наклона температурной зависимости верхнего критического магнитного поля соответствующих образцов MgB<sub>2</sub> при росте их остаточного удельного сопротивления. При этом зависимость  $-dH_{c2}/dT$  от  $\rho_n$  близка к линейной. Аналогичная зависимость  $H_{c2}$  от  $\rho_n$  в области постоянной  $T_c$  была ранее обнаружена нами для бинарных сверхпроводящих соединений NbC [29] и Nb<sub>3</sub>Sn [28].

# 3. Обсуждение

Зависимость верхнего критического магнитного поля от удельного сопротивления в MgB<sub>2</sub> хорошо согласуется с представлениями микротеории для сверхпроводника с фононным механизмом сверхпроводимости [26,27,39,40] и может быть использована для оценки параметров электронной структуры.

В обычном случае однозонного сверхпроводника с хорошим приближением наклон температурной зависимости  $H_{c2}$  может быть представлен в виде линейной функции удельного сопротивления [28–30]

$$-dH_{c2}/dT = A + B\rho_n,\tag{1}$$

где  $A \propto T_c / \langle v_{\perp}^2 \rangle$ ,  $B \propto N(0)$ . Здесь  $\langle v_{\perp}^2 \rangle$  — усредненный по поверхности Ферми квадрат перпендикулярной приложенному магнитному полю компоненты скорости Ферми [40], N(0) — плотность электронных состояний на уровне Ферми. Значение параметра *A*, которое соответствует наклону верхнего критического магнитного поля чистого предела  $-dH_{c2}^0/dT$ , определяется в результате экстраполяции зависимости  $-dH_{c2}/dT(\rho_n)$  к нулевому остаточному сопротивлению.

На основе экспериментальных данных, приведенных на рис. 2, мы оценили величину параметра А. (С повышением дефектности  $-dH_{c2}^0/dT$  слабо уменьшается из-за небольшого снижения критической температуры.) Однако для двухзонного сверхпроводника при определении критического поля чистого предела необходимо учитывать особенности электронной структуры. В случае MgB<sub>2</sub> верхнее критическое поле определяется группой носителей 2D  $\sigma$ -зоны, тогда как в проводимости участвуют носители 2D  $\sigma$ -зоны и 3D  $\pi$ -зоны [41–43]. Представленная на рис. 2 зависимость фактически отражает изменение критического поля при сокращении длины свободного пробега электронов l из-за рассеяния на дефектах в условиях неизменной электронной структуры. Полагаем, что дефекты приводят к одинаковым изменениям *l* для электронов в обеих зонах. Поэтому зависимость  $-dH_{c2}/dT$  от  $\rho_n$  для носителей только  $\sigma$ -зоны качественно будет иметь тот же вид, изменится только масштаб по оси ординат. Результат экстраполяции не изменится. Таким образом, величина параметра А соответствует наклону температурной зависимости верхнего критического магнитного поля в чистом пределе  $-dH_{c2}^0/dT$  для электронов  $\sigma$ -зоны в MgB<sub>2</sub>.

Для MgB<sub>2</sub> величина  $-dH_{c2}^0/dT$  составляет 0.1 T/K, соответственно  $H_{c2}^0(0) \sim 2.5$  T. Близкие значения верхнего критического магнитного поля имеют монокристаллы [11–17]. Средний по поверхности Ферми квадрат скорости Ферми в плоскости  $ab\langle v_{ab}^{*2}\rangle$  определяется из выражения [30,40]

$$-\frac{dH_{c2}^0}{dT} = 2.11 \cdot 10^{16} \frac{T_c}{\langle v_{ab}^{*2} \rangle},\tag{2}$$

где  $v_{ab}^* = v_{ab}/(1+\lambda)$ ,  $v_{ab}$  — зонное значение,  $\lambda$  — константа электрон-фононного взаимодействия, наклон в Oe/K, скорость Ферми в cm/s. В результате величина  $\langle v_{ab}^{*2} \rangle^{1/2}$  составила около  $3 \cdot 10^7$  cm/s, что согласуется со средним зонным значением для эллипсоидов 2D  $\sigma$ -электронов [42] при  $\lambda = 1.5$ .

Определив  $-dH_{c2}^0/dT$ , можно по формуле (1) оценить вклад от рассеяния  $B\rho_n$  в величину верхнего критического поля и для однозонного случая плотность электронных состояний на уровне Ферми из выражения [28–30]

$$-\frac{dH_{c2}}{dT} - \left(-\frac{dH_{c2}^0}{dT}\right) = 3.3 \cdot 10^{-27} N^*(0) \rho_n, \qquad (3)$$

где  $N^*(0) = N(0)(1 + \lambda)$ , N(0) — зонное значение в 1/(erg  $\cdot$  cm<sup>3</sup>), наклон  $-dH_{c2}/dT$  в Oe/K, удельное сопротивление в Ω.ст. Величина плотности электронных состояний на уровне Ферми, полученная из этого выражения для MgB<sub>2</sub>, является оценкой сверху, поскольку верхнее критическое магнитное поле определяется группой носителей одной зоны, а удельное сопротивление — носителями обеих зон. Согласно зонным расчетам вклад в проводимость от электронов 2D  $\sigma$ -зоны составляет около 30% [42]. С учетом этого  $N^*(0)$ в  $\sigma$ -зоне должна быть примерно в три раза меньше величины, определенной выше, и будет составлять около  $1 \cdot 10^{34}$  1/(erg · cm<sup>3</sup>). Это значение согласуется с зонным значением плотности электронных состояний на уровне Ферми  $\sigma$ -электронов (около 40% суммарной N(0) [42]) при  $\lambda = 0.9$ .

Таким образом, если сопоставить наши оценки  $\langle v_{ab}^{*2} \rangle^{1/2}$  и  $N^*(0)$  с соответствующими зонными значениями для  $\sigma$ -электронов MgB<sub>2</sub> [42], оказывается, что величина их константы связи  $\lambda$  близка к 1. С учетом поправок на сильную связь эта величина соответствует  $2\Delta/kT_c \approx 4$ , где  $\Delta$  — энергетическая щель сверхпроводника, k — постоянная Больцмана.

Из зависимости, представленной на рис. 2, следует, что с ростом дефектности диборида магния уменьшается его длина когерентности  $\xi(T)$ . Для сверхпроводника второго рода этот параметр связан с наклоном критического поля соотношением  $-dH_{c2}/dT = \Phi_0/(2\pi T_0\xi^2(0)),$ где  $\Phi_0$  — квант магнитного потока. Значению  $-dH_{c2}^0/dT$ отвечает длина когерентности Гинзбурга-Ландау идеального материала  $\xi(0) = 95 \,\text{Å}$ . В чистом пределе  $\xi(0) = 0.74\xi_0$ , где  $\xi_0$  — параметр микротеории. Для  $MgB_2$   $\xi_0 = 125$  Å. В грязном сверхпроводнике, когда вклад рассеяния электронов в величину Н<sub>c2</sub> является доминирующим, длина когерентности меняется с длиной пробега по закону  $\xi(0) \propto \sqrt{\xi_0 l}$ . В этом случае наклон критического поля будет отвечать соотношению  $-dH_{c2}/dT \propto \Phi_0/(2\pi T_c \xi_0 l)$ . В промежуточном случае вклад рассеяния  $[(-dH_{c2}/dT) - (-dH_{c2}^0/dT)]$  растет пропорционально 1/l и соотносится с наклоном критического поля в чистом пределе как  $(\xi_0/\sqrt{\xi_0 l})^2 = \xi_0/l$ . С хорошей точностью отношение  $\xi_0/l$  можно определить из выражения [28-30]

$$\frac{\left[(-dH_{c2}/dT) - (-dH_{c2}^0/dT)\right]}{-dH_{c2}^0/dT} = 0.9 \,\frac{\xi_0}{l}.\tag{4}$$

Мы оценили среднюю длину свободного пробега электронов для образцов диборида магния с различной дефектностью. В монокристаллах она может достигать 100 параметров кристаллической решетки и сокращается до нескольких параметров решетки для Электронные характеристики и параметры сверхпроводящего состояния (в чистом пределе)  $\sigma$ -электронов диборида магния, а также карбида ниобия [29,30], оцененные по параметрам их экспериментальных зависимостей  $-dH_{c2}/dT$  от  $\rho_n$ 

| Характеристика                                             | MgB <sub>2</sub> | NbC |
|------------------------------------------------------------|------------------|-----|
| $T_c$                                                      | 39               | 12  |
| $\langle v_{ab}^{*2} \rangle^{1/2}$ , 10 <sup>7</sup> cm/s | 3                | 1.7 |
| $N^*(0), 10^{34}/(\text{erg} \cdot \text{cm}^3)$           | 1                | 3.6 |
| λ                                                          | 1                | 0.9 |
| $\gamma^*(0)$ , mJ/(mol f.u. · K <sup>2</sup> )            | 1                | 3   |
| $\xi_{ab}(0), \operatorname{\AA}$                          | 95               | 175 |
| $\delta_{ab}(0),  \mathrm{\AA}$                            | 550              | 500 |
| κ                                                          | 6                | 3   |
|                                                            |                  |     |

Примечание. Для NbC с кубической решеткой  $\langle v_{ab}^2 \rangle = 2 \langle v^2 \rangle / 3$ , где  $\langle v^2 \rangle$  — средний по поверхности Ферми квадрат скорости Ферми [29,30].

пленок с остаточным удельным сопротивлением около 50  $\mu\Omega\cdot \text{cm}.$ 

В таблице представлены параметры MgB<sub>2</sub> для носителей 2D  $\sigma$ -зоны, которые определены в результате измерений верхнего критического магнитного поля  $H_{c2}$ образцов с различной дефектностью. ( $\gamma^*$  — коэффициент при электронной теплоемкости,  $\delta_{ab}(0)$  — глубина проникновения магнитного поля в сверхпроводник,  $\kappa$  параметр Гинзбурга–Ландау). Величина  $\gamma^*$  хорошо согласуется с оценками коэффициента при электронной теплоемкости для  $\sigma$ -электронов, полученными из измерений теплоемкости [6,7].

В таблице приведены также результаты аналогичных исследований соединения NbC [29,30]. Обращает на себя внимание тот факт, что оба соединения имеют практически одинаковую величину константы связи  $\lambda \approx 1$ , а их критическая температура отличается более чем в три раза. При этом плотность электронных состояний на уровне Ферми в дибориде магния оказывается даже ниже, чем в карбиде ниобия, и на порядок меньше, чем в одном из наиболее высокотемпературных бинарных соединений сверхпроводников Nb<sub>3</sub>Sn [28,30]. Таким образом, в рамках фононного механизма, высокая критическая температура MgB2 не может определяться только величиной плотности электронных состояний и константы связи λ. По-видимому, важную роль играют особенности фононного спектра. Фононный спектр диборида магния простирается до 100 meV, в то время как у карбида ниобия спектр заканчивается при 35 meV [44-46]. Средняя фононная частота в MgB<sub>2</sub> [44] втрое выше, чем в NbC [46], что может объяснить разницу в величине их критической температуры.

#### 4. Заключение

В настоящей работе исследовано верхнее критическое магнитное поле  $H_{c2}$  образцов MgB<sub>2</sub> с критической температурой, близкой к 39 K, и различной дефект-

ностью. Обнаружено характерное для обычных сверхпроводников с фононным механизмом повышение Н<sub>c2</sub> при росте остаточного удельного сопротивления  $\rho_n$ . Зависимость  $H_{c2}$  от  $\rho_n$  оказалась близкой к линейной и отвечает небольшой дефектности материала, когда практически не проявляются изменения его электронной структуры. Оценены важнейшие параметры электронной структуры и сверхпроводящего состояния MgB2. При этом учитывался двухзонный характер сверхпроводимости материала. Имеющиеся экспериментальные данные позволили прямо определить средний квадрат скорости Ферми электронов 2D  $\sigma$ -зоны, длину когерентности, а также среднюю длину их свободного пробега в образцах с различной дефектностью. При оценке величины плотности электронных состояний на уровне Ферми для *о*-электронов привлекались данные о соотношении вклада в проводимость носителей л-и о-зоны. Наши оценки электронных характеристик MgB<sub>2</sub> согласуются с полученными в расчетах [41-43] зонными значениями при условии сильного электрон-фононного взаимодействия в  $\sigma$ -зоне с константой связи  $\lambda \approx 1$ .

Сравнение MgB<sub>2</sub> с исследованным нами ранее соединением NbC ( $T_c = 12$  K) показало, что эти материалы имеют практически одинаковую величину константы связи. Различие в величине критической температуры может определяться характерной частотой фононного спектра, которая в MgB<sub>2</sub> [44] примерно в три раза выше, чем в NbC [46].

# Список литературы

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimutsu. Nature (London) 410, 63 (2001).
- [2] A.Y. Liu, I.I. Mazin, J. Kortus. Phys. Rev. Lett. 87, 087005 (2001).
- [3] P. Szabo, P. Samuely, J. Kacmarcik, T. Klein, J. Marcus, D. Fruchardt, S. Miraglia, C. Marcenat, A.G.M. Jansen. Phys. Rev. Lett. 87, 137 005 (2001).
- [4] F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh, J. Klein, S. Miraglia, D. Fruchardt, J. Marcus, Ph. Monod. Phys. Rev. Lett. 87, 177 008 (2001).
- [5] H. Schmidt, J.F. Zasadzinski, K.E. Gray, D.G. Hinks. Physica C 385, 221 (2003).
- [6] F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, S. Tajima. Phys. Rev. Lett. 89, 257001 (2002).
- [7] F. Bouquet, Y. Wang, I. Sheikin, P. Toulemonde, M. Eisterer, H.W. Weber, S. Lee, S. Tajima, A. Junod. Physica C 385, 192 (2003).
- [8] H.D. Yang, J.Y. Lin, H.H. Li, F.H. Hsu, C.J. Liu, S.C. Li, R.C. Yu, C.Q. Jin. Phys. Rev. Lett. 87, 167 003 (2001).
- [9] J.H. Jung, K.W. Kim, H.J. Lee, M.W. Kim, T.W. Noh, W.N. Kang, H.J. Kim, E.M. Choi, C.U. Jung, S.I. Lee. Phys. Rev. B 65, 052 413 (2002).
- [10] A. Pimenov, A. Loidl, S.I. Krasnosvobodtsev. Phys. Rev. B 65, 172 502 (2002).
- [11] A.K. Pradhan, Z.X. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito, H. Ihara. Phys. Rev. B 64, 212 509 (2001).
- [12] T. Masui, S. Lee, A. Yamamoto, S. Tajima. Physica C 378–381, 216 (2002).

- [13] Yu. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, M. Murakami. Phys. Rev. B 66, 180504 (2002).
- [14] Yu. Eltsev. Physica C 385, 162 (2003).
- [15] M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wisniewski, H.W. Weber. Phys. Rev. B 66, 052 505 (2002).
- [16] L. Lyard, P. Samuely, P. Szabo, C. Marcenat, T. Klein, K.H.P. Kim, C.U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, L. Paulius, J. Marcus, S. Blanchard, A.G.M. Jansen, U. Welp, G. Karapetrov, W.K. Kwok. Supercond. Sci. Technol. 16, 193 (2003).
- [17] Y. Machida, S. Sasaki, H. Fujii, M. Furuyama, I. Kakeya, K. Kadowaki. Phys. Rev. B 67, 094 507 (2003).
- [18] M.H. Jung, M. Jaime, A.H. Lacerda, G.S. Boebinger, W.N. Kang, H.J. Kim, E.M. Choi, S.I. Lee. Chem. Phys. Lett. 343, 447 (2001).
- [19] H.J. Kim, W.N. Kang, E.M. Choi, M.S. Kim, K.H.P. Kim, S.I. Lee. Phys. Rev. Lett. 87, 087 002 (2001).
- [20] H.J. Kim, W.N. Kang, H.J. Kim, E.M. Choi, K.H.P. Kim, H.S. Lee, S.I. Lee, M.O. Mun. Physica C 391, 119 (2003).
- [21] S. Patnaik, L.D. Cooley, A. Gurevich, A.A. Polyanskii, J. Jiang, X.Y. Cai, A.A. Squitieri, M.T. Naus, M.K. Lee, J.H. Choi, L. Belenky, S.D. Bu, J. Letteri, X. Song, D.G. Schlom, S.E. Babcock, C.B. Eom, E.E. Hellstrom, D.C. Larbalestier. Supercond. Sci. Technol. 14, 315 (2001).
- [22] W. Jo, J.U. Huh, T. Ohnishi, A.F. Marshall, M.R. Beasley, R.H. Hammond. Appl. Phys. Lett. 80, 3563 (2002).
- [23] Y. Bugoslavsky, Y. Miyoshi, G.K. Perkins, A.D. Caplin, L.F. Cohen, A.V. Pogrebnyakov, X.X. Xi. Phys. Rev. B 69, 132508 (2004).
- [24] Y. Bugoslavsky, Y. Miyoshi, G.K. Perkins, A.D. Caplin, L.F. Cohen, H.Y. Zhai, H.M. Christen, A.V. Pogrebnyakov, X.X. Xi, O.V. Dolgov. Supercond. Sci. Technol. 17, S350, (2004).
- [25] S.Y. Xu, Qi Li, E. Wertz, Y.F. Hu, A.V. Pogrebnyakov, X.H. Zeng, X.X. Xi, J.M. Redwing. Phys. Rev. B 68, 224 501 (2003).
- [26] Л.П. Горьков. ЖЭТФ 37, 1407 (1959).
- [27] N.R. Werthamer. Superconductivity / Eds R.D. Parks, Dekker Marcel. N.Y. (1969). Vol. 1. 321 p.
- [28] A.I. Golovashkin, N.P. Shabanova. Physica C 185–189, 2709 (1991).
- [29] С.И. Красносвободцев, Н.П. Шабанова, Е.В. Екимов, В.С. Ноздрин, Е.В. Печень. ЖЭТФ 108, 970 (1995).
- [30] Н.П. Шабанова, С.И. Красносвободцев, В.С. Ноздрин, А.И. Головашкин. ФТТ 38, 7, 1969 (1996).
- [31] H. Won, K. Maki. Physica C 282–287, 1837 (1997).
- [32] Н.П. Шабанова, С.И. Красносвободцев, А.В. Варлашкин, А.И. Головашкин. ФТТ 44, 1758 (2002).
- [33] Н.П. Шабанова, С.И. Красносвободцев, А.В. Варлашкин, А.И. Головашкин. Научная сессия МИФИ-2004. Сб. науч. тр. МИФИ, М. (2004). Т. 4. С. 116.
- [34] A.A. Abrikosov. Phys. Rev. B 53, 8910 (1996).
- [35] A.A. Abrikosov. Int. J. Mod. Phys. B 13, 3405 (1999).
- [36] С.И. Красносвободцев, А.В. Варлашкин, Н.П. Шабанова, А.И. Головашкин. ЖТФ 73, 136 (2003).
- [37] Н.П. Шабанова, С.И. Красносвободцев, А.В. Варлашкин, В.С. Ноздрин. Краткие сообщения по физике ФИАН 12, 23 (2002).
- [38] X.H. Chen, Y.S. Wang, Y.Y. Xue, R.L. Meng, Y.Q. Wang, C.W. Chu. Phys. Rev. B 65, 024 502 (2001).

- [39] Л.П. Горьков, Т.К. Мелик-Бархударов. ЖЭТФ 45, 1493 (1963).
- [40] W.H. Butler. Phys. Rev. Lett. 44, 1516 (1980).
- [41] J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer. Phys. Rev. Lett. 86, 4656 (2001).
- [42] K.D. Belashchenko, M. van Schilfgaarde, V.P. Antropov. Phys. Rev. B 64, 092 503 (2001).
- [43] I.I. Mazin, V.P. Antropov. Physica C 385, 49 (2003).
- [44] R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, D.G. Hinks. Phys. Rev. Lett. 87, 017 005 (2001),
- [45] O.V. Dolgov, R.S. Gonnelli, G.A. Ummarino, A.A. Golubov, S.V. Ghulga, J. Kortus. Phys. Rev. B 68, 132 503 (2003).
- [46] J. Geerk, W. Gläser, F. Gompf, W. Reichardt, E. Schneider. Low Temp. Phys. LT-14 / Eds M. Krusius, M. Vuorio. North-Holland Publ. Co., Amer. Elsevier. Publ. Co. (1975). Vol. 2. P. 411.